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Abstract 

Regular, general-purpose LLM models such as GPT use it’s training data, which is 

often scraped from the internet, to answer queries from the user. And as we could 

imagine, an answer that is correct at one point in time may not be correct at 

another. This is where these general-purpose LLM models fail. They fail to provide 

answers, advice or make decisions based on real-time data. 

Hence, when a problem such as creating a system that uses LLMs to process natural 

language queries and retrieve relevant information from large, unstructured 

documents such as policy documents, contracts and emails presents itself, a few 

issues that are inherent to LLMs comes to mind – such as LLM hallucinations, missing 

key information (even in systems with semantic search, since it’s possible that some 

information is semantically far apart but also is crucial information to answer the 

user’s query) and providing outdated advice based on the LLM system’s training data.  

This document explores a possible solution that overcomes the aforementioned issues 

to a high degree, making use of recent technological advancements such as agentic 

AI and RAG, along with some classic, well-known LLM techniques such as end-to-end 

evaluation, relevance assessment, knowledge graphs and more. This solution makes 

sure that the system “understands” the document at a human-level to the highest 

degree possible.  

Introduction 

Analysing unstructured data has been a persistent challenge in data processing. 

Researchers have been trying to solve the problem of giving machines the ability to 

perceive and understand the world like humans do for as early as 1959, which is when 

David Hubel and Torsten Wiesel released their work “Receptive fields of single 

neurons in the cat’s striate cortex” which showed the existence of simple and complex 

neurons. This was one of the pivotal moments that contributed to the development of 

machine learning concepts such as CNN and RNN. When it comes to LLMs, it started in 

the early 1990s when IBM’s statistical models pioneered word alignment techniques 

for machine translation, which now is the simplest form of a language model.  

A Large Language Model (LLM) is a language model trained with self-supervised machine 

learning on a vast amount of text and is designed for Natural Language Processing 

(NLP) tasks, especially language generation, as seen with generative AI in recent 

years. These models, when trained with sufficient data, acquire the ability to 

predict and generate syntax, semantics and ontologies in our natural language. 

However, these systems lack logic, and biases present in the training data are 

introduced, especially when the LLM works on a simple concept such as the n-gram 



model. This happens since when large amounts of data is required, it’s hard to make 

sure that the data is fairly divided between all topics and subtopics. This issue 

is also worsened when LLMs such as GPT acquire most of their training data from the 

internet.  

This alone introduces two issues in LLM systems: 

1) The inherent biases introduced due to the LLM’s training data and 

2) All information provided are based on the LLM’s training data, which is not 

time-aware – hence the information provided by an LLM may be incorrect for a 

given time since the data its using to answer may be out-of-date, without the 

LLM knowing. 

These two shortcomings become detrimental when an LLM system needs to perform real-

world tasks and make time and information specific decisions, such as answering 

queries related to insurance, contracts, etc. 

The main goal for this system is to be able to parse natural language, vague user 

queries, then search and retrieve relevant clauses or rules from the provided 

documents using semantic understanding rather than simple keyword matching. This 

information must then be evaluated to arrive at the correct decision based on the 

user’s query, and this answer must be returned as a structured JSON response that 

can be used by downstream systems. LLMs alone won’t be sufficient to arrive to this 

goal. So, in addition to LLMs, this solution will integrate the use of agentic AI 

and other complementary LLM techniques for each task. 

Agentic AI is an autonomous, goal-oriented AI system that overcomes the shortcomings 

of general-purpose LLM models by being able to make autonomous decisions based on 

real-time data. It can work with multiple agents with the help of AI orchestration. 

Agentic AI builds on generative AI techniques by using large language models to 

function in dynamic environments. Agents can specialize in a specific task. This is 

one of the advantages of agentic AI over general-purpose AI such as GPT, and 

developers can use this advantage in various levels of development of a system. For 

instance, in an LLM-powered intelligent query retrieval system, dividing the main 

tasks of parsing, reading, understanding the input document and answering the user’s 

query can all be divided into smaller, specialized tasks that can be handled by 

various agents that work together. Also, other systems/downstream agents can also 

easily work with this agentic system as a whole, making this LLM-powered intelligent 

query retrieval system a pluggable component to other domain specific systems. 

 

 

 

 



Problem Statement 

The system needs to use Large Language Models (LLMs) to process natural language 

queries and retrieve relevant information from large unstructured documents such as 

policy documents, contracts and emails, and provide a time-sensitive and information-

specific decision or advice for the user based on their query. 

The following are the objectives of this system, assuming an input query such as: 

“30-year-old male, knee surgery, 3-month-old insurance policy.” 

Then the system must: 

- Parse and structure the query to identify key details such as age, procedure, 

location, and policy duration. 

- Search and retrieve relevant clauses or rules from the provided documents using 

semantic understanding rather than simple keyword matching. 

- Evaluate the retrieved information to determine the correct decision, such as 

approval status or payout amount, based on the logic defined in the clauses. 

- Return a structured JSON response containing: Decision (e.g., approved or 

rejected), Amount (if applicable), and Justification, including mapping of each 

decision to the specific clause(s) it was based on. 

- Be capable for application in domains such as insurance, legal compliance, human 

resources and contract management. 

A sample response may be:  

"Yes, knee surgery is covered under the policy." 

                              

Fig 1: Process flow diagram of the Agentic AI + LLM powered information retrieval system. 



 

 

Related Work 

This section contains a literature survey conducted on journal and conference 

articles related to the problem statement written in English and published after 

2021. This is an explorative literature survey that was conducted to learn more 

about the problem statement, technologies involved and existing solutions to similar 

problems, and hence helped arrive at an actionable solution to the problem at hand.  

Article 1: DocETL: Agentic Query Rewriting and Evaluation for Complex Document 

Processing. (2025) Published in arxiv. 

Authors: Shreya Shankar, Tristan Chambers, Tarak Shah, Aditya G. Parameswaran, Eugene 

Wu. 

Objective: This article presents DocETL, a system that optimizes complex document 

processing pipelines, while accounting for LLM shortcomings. The LLM shortcomings 

identified in this article:  

• LLMs trade accuracy for reduced cost when executing user specific operations 

by expressing tasks as a single-step map operation. 

• Outputs are, as a result, inaccurate even with optimized prompts, since these 

systems assume user-defined operations will yield sufficiently accurate 

results when executed by the LLM, and if the document in question exceeds the 

LLM’s context limit, results provided will be inaccurate due to LLM 

hallucinations.  

• Even if the document fits this limit, the LLM may miss key information or 

include spurious details. 

Methodology: The DocETL application introduces: 

• Logical rewriting of pipelines tailored for LLM-based tasks 

• Agent-guided plan evaluation mechanism that synthesizes and orchestrates task 

specific validation prompts 

• Optimization algorithm that efficiently finds promising plans, considering the 

latencies of agent-based plan generation and evaluation. 

These are done through a YAML-based interface for users to create and author their 

pipelines with LLM-specific operators, including “resolve” for entity resolution, 

and “gather” to maintain context when processing document chunks. Users can specify 

their pipelines through this application while the application decomposes, rewrites 

and optimizes the pipeline. 

Limitations: While DocETL is said to demonstrate accuracy, thereby showing 

improvements in real-world applications in comparison to traditional LLM systems, 



it is acknowledged that the system still consists of biases, even though the are 

reduced significantly using the perspectives of different agents and using their 

optimizer to further optimize the model. 

This system also consists a YAML-based user interface, that may not be usable by 

most casual users with a non-technical background. This system provides a novel 

approach for rewriting the single-step LLM pipeline to match the user’s requirements. 

However, this system would not work if the user expects actionable advice and 

decisions by providing a query in natural language that may or may not be vague, and 

one or many unstructured documents. 

 

Article 2: Revisiting Uncertainty-based Query Strategies for Active Learning with 

Transformers.(2022) Published in arxiv. 

Authors: Christopher Schröder, Andreas Niekler, Martin Potthast. 

Objectives: This paper systematically explores various uncertainty-based query 

strategies as a computationally inexpensive alternative, despite their disadvantages 

compared to other recent active learning techniques. It accesses the performance of 

various combinations of uncertainty-based query strategies along with transformer 

models such as BERT and DistilRoBERTa. 

Observations: Five uncertainty-based query strategies in combination with the 

aforementioned transformer models, and the investigation showed that these 

strategies still perform well. These strategies, being computationally inexpensive, 

can be a great addition to the techniques that this solution will use to parse and 

rewrite user queries so that the LLM model understands the user query, and hence be 

able to look for the correct information from the document. 

 

Article 3: Context Aware Query Rewriting for Text Rankers using LLM.(2023) Published 

in arxiv. 

Authors: Abhijit Anand, Venktesh V, Vinay Setty, Avishek Anand. 

Objectives: This article explores the limitations of LLMs when it comes to query 

rewrites and how to utilize LLMs to improve query rewriting for text ranking tasks. 

They use LLM-based query rewriting only during the training phase, and use context-

aware query rewriting to leverage the benefits of LLMs for query understanding. 

This is different from traditional LLM systems since they use LLM-based query 

rewriting for the main systems as well and do not use context-aware techniques.  

Methodology: The Context Aware Rewriter (CAR) framework reformulates ambiguous and 

vague user queries by employing a context-aware prompting of an LLM. A ranker model 

fine-tuned on disambiguated queries is directly employed to rank new queries without 



rewriting them. The query rewrites are generated by conditioning the LLM through 

few-shot prompting on the relevant document for the query to avoid drift. 

“This context-aware prompting of LLMs results in better rewrites without topic 

drifts, as the LLM is conditioned on intents conveyed in the document. We also 

introduce a constraint on the maximum length of the output sequence generated.” 

Limitations: This method identifies and chooses ambiguous queries based on heuristics 

like query length and specific types of queries with multiple meanings based on 

context from the document. This method can be improved further by improving the 

heuristic considered. 

Takeaways: The CAR framework provides a specific and well thought out framework that 

can be used to reformulate vague queries without drifting away from what the user 

probably meant, using context from the document provided by the user. This framework 

can be used along with the uncertainty-based query strategies to overcome the 

limitations that are introduced by heuristics.  

 

 

Article 4: Query Understanding in LLM-based Conversational Information Seeking. 

Authors: Yifei Yuan, Zahra Abbasiantaeb, Mohammad Aliannejadi, Yang Deng. 

Objectives: This article explores LLM-driven methods for developing evaluation 

metrics to assess query understanding quality in multiturn interactions, strategies 

for building more interactive systems and more. Out of these objectives, the most 

relevant objective is the query understanding evaluation. The system interprets the 

intent and context of a user’s query to deliver more accurate and relevant search 

results. 

Methodology: The two main evaluation techniques used are end-to-end evaluation and 

LLM-based relevance assessment. End-to-end evaluation uses human-judged benchmarks 

to assess the relevance of query-answer pairs. These benchmarks include QReCC and 

TopioCQA. Relevance assessment leverages LLMs to evaluate the relevance of the 

retrieved information to a user’s query.  

Limitations: One of the persisting challenges highlighted in this article is with 

multilingual and cross-cultural query understanding, since these methods are 

specific to the English language. To overcome this challenge, techniques that cater 

to multilingual queries need to be implemented in the future. 

 

Article 5: Large Language Model Powered Agents for Information Retrieval. 

Authors: An Zhang, Yang Deng, Yankai Lin, Xu Chen, Ji-Rong Wen, Tat-Seng Chua. 



Objectives: This article presents a comprehensive exploration of how LLM-powered 

agents can enhance various information retrieval (IR) applications, including search 

engines, recommender systems, social networks, and conversational assistants. The 

primary objective is to provide an in-depth overview of cutting-edge designs for 

such agents, discuss the open challenges they face, and identify potential research 

directions that could revolutionize IR. The tutorial also seeks to foster discussions 

that extend beyond IR, touching upon areas such as human-computer interaction and 

computational social science. 

Methodology: The paper synthesizes recent research and real-world deployments, 

distilling common architectural patterns for LLM-powered agents into a unified 

framework comprising profiling, memory, planning, and action modules. It examines 

how these agents are applied in different domains—such as simulating social networks, 

solving domain-specific problems, improving recommender systems through personalized 

interaction, and enabling conversational agents capable of user simulation, 

proactive dialogues, and multi-turn instruction following. The analysis highlights 

integration strategies and use cases, illustrating how LLMs’ human-like reasoning 

and adaptability can address traditional IR system limitations. 

Limitations: Some of the acknowledged limitations are from the current state of LLM-

powered agents. The system risks hallucinations, inconsistencies and ethical issues 

that is caused due to the training data. In our solution, this problem can be 

mitigated by creating document models that cover the various semantic and logical 

links between information present in documents, and dividing high computation tasks 

between multiple agents to avoid hallucinations.  

 

 

 

 

 

 

 

 

 

 



Proposed Solution 

This suggested solution is an LLM-powered agentic system that understands vague 

natural language queries, reasons over unstructured documents and returns traceable, 

structured decisions with clear justifications.  

This system works on an agent-based approach, rather than using general-purpose LLM 

models such as GPT since they provide answers based on its training data, and we do 

not want advice/decisions from the past, we want decisions that consider real-time 

information – and an agentic AI system powered by LLM orchestration is exactly what’s 

needed for that. This system will contain multiple agents to: 

• Parse and rewrite vague, natural language queries and extract structured 

information from the query with the help of an agent powered with uncertainty-

based query strategies, end-to-end evaluation and relevance assessment. 

• Perform semantic search with the help of various advanced NLU techniques. To 

avoid missing relevant pieces of information, the agent retrieves relevant 

chunks iteratively, ensuring that the system acquires a better level of 

understanding of the document. 

• The retrieved data is now used to arrive at a decision. Agentic AI help with 

the reasoning process using RAG systems and multiagent reasoning. 

• Final output is structured as a JSON for downstream systems and a natural 

language output for the user. 

 

Fig 2: Architecture diagram of the Agentic AI + LLM powered information retrieval system. 

 

 



The following table briefly explains each high-level component used in this solution: 

Table 1: Description of high-level components used in the Agentic AI + LLM powered 

information retrieval system. 

Component Explanation 

Frontend 

and API 

Gateway 

React.js frontend for entering query, uploading documents and 

displaying output. FastAPI backend (Python) contains endpoints 

such as /query, /upload. It also orchestrates LangChain tool calls. 

Document 

Processing 

The uploaded document is parsed using PyMuPDF/docx2txt. This parsed 

data undergoes semantic chunking and metadata tagging. Embedding 

is produced for each of these chunks. 

Coverage 

Agent 

This agent is invoked at the document processing time to create a 

multi-layered document model such as a clause graph, concept index, 

entailment/contradiction matrix, hierarchical embeddings and 

summaries and more. The goal of this agent is to model the document 

so that semantic retrieval rarely misses important, logical 

context. 

 Vector 

Database 

The enhanced embeddings from the coverage agent is stored in the 

vector database. 

Relational 

Database 

A Postgres database stores metadata, mapping chunk IDs, user 

queries, audit logs, decisions and feedback.  

LangChain 

Agent 

Layer 

This layer contains multiple agents that are responsible for 

various tasks. 

• Query Parser Agent: Parses and rewrites vague natural 

language queries into structured JSON with entities that 

scored the highest in the relevance assessment. 

• Retriever Agent: Retrieves data from the vector database 

using various techniques such as an iterative top-k retrieval 

and dependency graph expansion.  

• Reader Agent: Reads retrieved chunks of data and highlights 

important information. 

• Justifier Agent: This agentic AI agent makes autonomous 

decisions based on the data read by the reader agent and maps 



it with that data, and stores the mapping chunk IDs and user 

query to the relational database. 

• Controller Agent: Orchestrates the sequence of the working 

of agents, handles uncertainty and makes decisions on if 

clarifying questions needs to be asked to the user 

 

 

 

Fig 3: Data flow diagram of the Agentic AI + LLM powered information retrieval system. 

 

 

 

 

 

 

 

 

 



Technological Specifications 

Hardware Specifications 

• Intel Core i5 2nd generation is a minimum requirement for this system. A 

better processer can be used as well. 

• 4 to 8 GB RAM is ideal. 

• 40MB of free hard disk drive space for the smooth running of the hardware 

system and this application. 

• 1024x768 monitor resolution. 

Software Specifications 

• Windows 10 or higher for an operating system. 

• Visual Studio Code as the code editor. 

• Python version 3.10 or higher 

• Cloud Service Providers : Google Cloud Platform, Vercel and Render for 

deployment of the application. 

• Database : Pinecone for a vector database and PostgreSQL for a relational 

database. 

• Backend : Python – FastAPI, LangChain to create an Agentic AI agents layer, 

Oauth for authentication, FAISS for semantic search, GPT-4 for the LLM. 

• Frontend: React.js for quick prototyping and to provide a simple and 

effective frontend. 

• Others: PyMuPDF, Apache Tika for document pre-processing, GitHub for version 

control. 

 

 

 

 

 

 

 

 



Conclusion 

 

The proposed LLM-powered intelligent query retrieval system addresses the critical 

shortcomings of conventional general-purpose language models by integrating agentic 

AI, Retrieval-Augmented Generation (RAG), and specialized query processing 

techniques. Unlike traditional LLMs, which rely solely on static training data, this 

system enables time-aware, document-specific reasoning over large, unstructured 

datasets such as contracts, policy documents, and compliance records. 

By employing multiple specialized agents—each tasked with parsing, semantic 

retrieval, reasoning, and justification—the architecture ensures that vague, natural 

language queries are transformed into precise, traceable decisions supported by 

relevant document clauses. The use of uncertainty-based query strategies, multi-

layered document modelling, and iterative retrieval further minimizes the risks of 

missing semantically distant but crucial information. 

This multi-agent, orchestration-driven approach not only enhances retrieval accuracy 

and interpretability but also outputs decisions in both structured JSON for 

downstream integration and natural language for user readability. The result is a 

flexible, pluggable component capable of seamless adoption across domains such as 

insurance, legal compliance, human resources, and contract management. 

In essence, this system bridges the gap between human-level comprehension and machine 

processing, offering a scalable, transparent, and domain-agnostic solution to 

complex, time-sensitive decision-making over unstructured documents. 
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